These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai

Online Examination 2020

Program: BE Computer Engineering	
Curriculum Scheme: Revised 2016	
Examination: Final Year Semester VII	
Course Code: CSC 701 and Course Name: Digital Signal \& Image Processing	
Time: 1hour	Max. Marks: 50
Note to the students:- All the Questions are compulsory and carry equal marks .	
Q. 1	For 6 bits per pixel representation what will be highest gray level value possible in the image?
Option A:	64
Option B:	63
Option C:	127
Option D:	255
Q. 2	Which of the following are four Neighbours of Pixel with coordinates (x, y) ?
Option A:	(x, y), $(x+1, y),(x-1, y-1),(x, y-1)$
Option B:	($x+1, y$), $(x+1, y+1),(x-1, y-1),(x, y-1)$
Option C:	$(x+1, y),(x-1, y),(x, y+1),(x, y-1)$
Option D:	($x-1, y$), $(x+1, y),(x, y),(x, y-1)$
Q. 3	Which of the following are eight Neighbours of Pixel with coordinates (4,4) ?
Option A:	$(3,5),(4,5),(5,5),(3,4),(5,4),(3,3),(4,3),(5,3)$
Option B:	$(3,5),(4,5),(5,5),(3,4),(6,4),(3,3),(4,3),(5,3)$
Option C:	(2,5),(4,5),(5,5),(3,4),(5,4),(3,3),(4,3),(5,2)
Option D:	$(3,5),(4,5),(6,5),(3,4),(5,4),(3,3),(4,3),(5,3)$
Q. 4	For an image of Size 10×10 pixels and 6 bits are used to represent each pixel then calculate how much storage in bits required to store this image .
Option A:	100 bits
Option B:	500 bits
Option C:	106 bits
Option D:	600 bits
Q. 5	if $X(k)=\{15,-3+6 \mathrm{j},-5,-3-6 \mathrm{j}\}$ and $\mathrm{x}(\mathrm{n})$ is inverse of $X(\mathrm{k})$, then find $\mathrm{x}(0)$.
Option A:	15
Option B:	-5

Option C:	1
Option D:	4
Q. 6	Calculate Number of Real Additions required to be done in calculation of 5 - point DFT Calculation?
Option A:	25
Option B:	45
Option C:	65
Option D:	90
Q. 7	The first five points of 8-point DFT of real valued sequence are $\{30,-7.2+5 \mathrm{j},-2-4 \mathrm{j}, 1.2-5 \mathrm{j}, 2\}$. Determine remaining three points i.e. $X(5), X(6)$ and $X(7)$.
Option A:	\{1.2+5j, -2+4j, -7.2-5j\}
Option B:	$\{1.2+5 \mathrm{j},-2+4 \mathrm{j}, 30\}$
Option C:	$\{1.2+5 \mathrm{j},-2+4 \mathrm{j},-7.2+5 \mathrm{j}\}$
Option D:	\{1.2+5j,-2-4j, 30$\}$
Q. 8	Calculate Number of Real Multiplications required to be done in calculation of 8-Point DFT?
Option A:	64
Option B:	128
Option C:	256
Option D:	512
Q. 9	If we split the N point data sequence into two $N / 2$ point data sequences $f 1(n)$ and $f 2(n)$ corresponding to the even numbered and odd numbered samples of $\mathrm{x}(\mathrm{n})$ and $\mathrm{F} 1(\mathrm{k})$ and $\mathrm{F} 2(\mathrm{k})$ are the $\mathrm{N} / 2$ point DFTs of $\mathrm{f} 1(\mathrm{k})$ and $\mathrm{f} 2(\mathrm{k})$ respectively, then what is the $\mathrm{N} / 2$ point DFT $X(k)$ of $x(n)$?
Option A:	F1(k)+F2(k)
Option B:	F1(k)-WNk F2(k)
Option C:	F1(k)+WNk F2(k)
Option D:	F1(k)-F2(k)
Q. 10	How many complex multiplications are required to compute $\mathrm{X}(\mathrm{k})$?
Option A:	$\mathrm{N}(\mathrm{N}+1)$
Option B:	$\mathrm{N}(\mathrm{N}-1) / 2$
Option C:	N2/2
Option D:	$\mathrm{N}(\mathrm{N}+1) / 2$
Q. 11	Which mathematical notation specifies the condition of periodicity for a continuous time signal ?
Option A:	$\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}+\mathrm{TO})$
Option B:	$x(n)=x(n+N)$
Option C:	$x(t)=e-\alpha t$
Option D:	$\mathrm{x}(\mathrm{t})=\mathrm{e} \alpha \mathrm{t}$

Q. 12	A system is said to be shift invariant only if
Option A:	a shift in the input signal also results in the corresponding shift in the output
Option B:	a shift in the input signal does not exhibit the corresponding shift in the output
Option C:	a shifting level does not vary in an input as well as output
Option D:	a shifting at input does not affect the output
Q. 13	Under which conditions does an initially relaxed system become unstable ?
Option A:	only if bounded input generates unbounded output
Option B:	only if bounded input generates bounded output
Option C:	only if unbounded input generates unbounded output
Option D:	only if unbounded input generates bounded output
Q. 14	Which among the following operations is/are not involved /associated with the computation process of linear convolution?
Option A:	Folding Operation
Option B:	Shifting Operation
Option C:	Multiplication Operation
Option D:	Integration Operation
Q. 15	Discrete-time signals are
Option A:	Continuous in amplitude and continuous in time
Option B:	Continuous in amplitude and discrete in time
Option C:	Discrete in amplitude and discrete in time
Option D:	Discrete in amplitude and continuous in time
Q. 16	Determine the discrete-time signal: $x(n)=1$ for $n \geq 0$ and $\mathrm{x}(\mathrm{n})=0$ for $\mathrm{n}<0$
Option A:	Unit ramp sequence
Option B:	Unit impulse sequence
Option C:	Exponential sequence
Option D:	Unit step sequence
Q. 17	Determine the Nyquist rate of the signal $\mathrm{x}(\mathrm{t})=1+\cos$ $2000 \pi t+\sin 4000 \pi t$.
Option A:	2000 Hz
Option B:	4000 Hz
Option C:	1 Hz
Option D:	8000 Hz
Q. 18	Decimation is a process in which sampling rate is
Option A:	Reduced
Option B:	Unpredictable
Option C:	Stable
Option D:	Enhanced

Q. 19	Double line effect is produced by
Option A:	First derivative
Option B:	Second derivative
Option C:	Third derivative
Option D:	Both a and b
Q. 20	If R is the entire region of the image then union of all segmented parts should be equal to
Option A:	R
Option B:	R'
Option C:	Ri
Option D:	Rn
Q. 21	Dark characteristics in an image are better solved using
Option A:	Laplacian Transform
Option B:	Gaussian Transform
Option C:	Histogram Specification
Option D:	Power-law Transformation
Q. 22	Which of the following fails to work on dark intensity distributions?
Option A:	Laplacian Transform
Option B:	Gaussian Transform
Option C:	Histogram Specification
Option D:	Power-law Transformation
Q. 23	An alternate approach to median filtering is
Option A:	Use a mask
Option B:	Gaussian filter
Option C:	Sharpening
Option D:	Laplacian filter
Q. 24	Final step of enhancement lies in \qquad of the sharpened image
Option A:	Increase range of contrast
Option B:	Increase range of brightness
Option C:	Increase dynamic range
Option D:	Decrease dynamic range
Q. 25	Output image after thresholding is
Option A:	Semi-color
Option B:	Grey
Option C:	Black \& White
Option D:	Color

